
 
2. ECCO2 regional model configuration: 
Ocean model: 
•  9-km horizontal grid spacing, 50 vertical levels 
•  Volume-conserving, C-grid 
•    Bathymetry: S2004 blend of GEBCO and 

 Smith and Sandwell [1997] [Marks and Smith, 2006] 
•    KPP mixing [Large et al., 1994] 
•  BCs from the global optimized solution 
Sea-ice model: 
•  C-grid 
•  Multi-categories zero-layer thermodynamics  

 [Hibler, 1980; Fenty et al., in prep.] 
•    Viscous plastic dynamics [Hibler, 1979]  
•    Prognostic snow and sea-ice salinity 
Model parameters: 

 taken from Nguyen et al. 2011 (see table 2) 
Atmospheric forcing:  

  JRA-25 
Simulation: 

 Duration: 1979-2010 
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1. Project Objectives: 
  
(i)  Implement a new package in the MITgcm code to track sea-ice and snow 
passive tracers such as age, salt, biological species, chemical compounds … 

(ii)  Focus on reproducing the recent Multi-Year (MY) ice decline as observed 
from satellite data since 2000 

(iii)  Find out the main physical processes involved in the recent Arctic sea ice 
volume loss by understanding the most important mechanisms acting on the 
different ice types (and in particular by weighting the relative importance of export 
versus thermodynamics processes) 

Figure 1. Observed (Black) and modeled 
(blue) MY sea ice area on January 1st for 
the period 2000-2009. The amount of MY ice 
area, the inter-annual variability and the negative trend 
are all well captured by the simulation. However, some 
differences remain, for example in terms of spatial 
repartition of the MY ice.  
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3.1 Results: Model versus Observations  
  

Figure 2. Observed (left) and modeled (middle) multi-year (MY) sea-ice area fraction 
over the Arctic Ocean on January 1st 2008. Right panel shows the difference (model 
minus observations). The white line shows QuikSCAT 0.1 MY fraction isopleth. The dashed white line in 
the middle panel represents this same isopleth for the model. The general pattern is reasonnably reproduced in 
the model, with the high concentrated MY ice cover located north of Greenland. In addition, the tongue of MY 
ice crossing the central Arctic from the North of Greenland to the Laptev Sea is remarkably well reproduced. 
Model’s discrepancies are significant in the Beaufort sea and in the central Arctic.   

 
3.2 Results: Focus on January 2008 
  

 
4. Results: MY ice loss contribution to the sea-ice decline 
  

equation (4) for h, we linearize it around a baseline ocean
model integration, i.e., we integrate equation (1) with our
best prior estimate ho of the model parameters, and we
rewrite the observation equation as

Dy ¼ GDhþ !!!!!; ð5Þ

where Dh = h − ho and Dy = y − G(ho). Matrix G is the
Jacobian matrix ∂y/∂h. Each column of matrix G can be
computed using a model perturbation experiment, i.e., a
model Green’s function for the corresponding parameter in
vector h.
[17] A cost function J that measures the length of the

control parameter perturbation and of the model‐data misfit
is defined

J ¼ DhT W" Dhþ Dy%GDhð ÞT Wy Dy%GDhð Þ; ð6Þ

where Wh and Wy are weight matrices for the control
parameter perturbation Dh and the model‐data misfit Dy −
GDh, respectively. If the model and observation error
covariance matrices are known, minimizing J with Wh =
Q−1 and Wy = R−1 provides the maximum likelihood esti-
mate [Menke, 1989; Wunsch, 2006]. The minimization of
cost function J with respect to Dh yields the solution

gDh ¼ GT Wy GþW"

! "%1
GT Wy Dy: ð7Þ

[18] An estimate of ocean circulation is then obtained by
integrating the model equation (1) using parameters ~h = ho +
gDh. For global ocean models, the length of the parameter
vector h can exceeds 109. Therefore the computation of the
full Jacobian matrix G using a Green’s function approach
and the inversion of G, as required in equation (7), would be
prohibitive. Nevertheless, as demonstrated herein and by
Menemenlis et al. [2005a], the optimization of a small

number of carefully chosen parameters h can lead to a
substantial reduction of cost function J.

3.2. Error Covariances and Weights
[19] We consider three different alternatives for weight

matrix Wy in the cost function, equation (6), because a prior
data error covariances are not known and are difficult to
estimate. In the first option each data set is assigned weights
that are inversely proportional to the number of data points
within that set, i.e., we divide each data set by the number of
data points in that particular set. In the second option,
weights are assigned such that each data set has approxi-
mately equal contribution to the overall cost function. In the
third option, we scale each term of the cost function by the
variance of the model‐data difference. Admittedly, all three
weight matrices are arbitrary and all three ignore the spatial
and temporal covariances in the errors, i.e., the off‐diagonal
elements in Wy are set to zero. Of interest to the present
discussion is that the three cases are different and that they
allow us to explore a wide range of plausible solutions. The
results presented in Table 2 are based on the second option,
that is, Wy is a diagonal matrix with scaling factors chosen
so that the respective contributions of each data set to the
cost function are approximately equal. Given that the
number of observations is much larger than the number of
model parameters being estimated, we set Wh to zero. That
is, we assume that there is no a priori knowledge about the
control parameters.

3.3. Baseline simulation A0
[20] The Green’s function optimization approach is

applied to a regional Arctic Ocean configuration of the
Massachusetts Institute of Technology general circulation
model (MITgcm) [Marshall et al., 1997]. This configuration
is described in detail by Losch et al. [2010] and was pre-
viously used in the studies of Condron et al. [2009],

Table 2. Model Parameters Used in Baseline A0, Optimized A1, and AOMIP Experiments

Parameter A0 A1 AOMIPa Comment

Initial conditions ECCO2 WOA05 Fields considered include PHC, WOA05,
WOA01, WGHC

Atmospheric forcing ECCO2 JRA25 ECCO2 was based on ERA40/ECMWF
Ocean albedo 0.15 0.16 ± 0.04 0.10
Sea ice dry albedo 0.88 0.7 0.6–0.75 0.73–0.83 from the Community Climate

System Model (CCSM)b

Sea ice wet albedo 0.79 0.71 ± 0.08 0.5–0.68 ≥0.655 from CCSM
0.4–0.6 from Curry et al. [2001]

Snow dry albedo 0.97 0.87 ± 0.10 0.80–0.84 0.96 from CCSM
0.84 from Curry et al. [2001]

Snow wet albedo 0.83 0.81 ± 0.10 0.60–0.77 ≥0.86 from CCSM
0.77 from Curry et al. [2001]

Ocean/air drag 1.02 1.00 ± 0.05
Air/sea ice drag 0.0020 0.0011 ± 0.0003 0.0011–0.0013
Ocean/sea ice drag 0.0052 0.0054 ± 0.0001 0.0055
Ice strength P* 2.7 2.3 ± 1.2 1.0–2.75 104 Nm−2

Lead closing Ho 0.5 0.6 ± 0.7 0.25–0.5
Vertical diffusivity 10−5 5.44 × 10−7 m2/s
Salt plume off on Nguyen et al. [2009]
River runoff factor 1 1.2 ± 1.2 factor × ARDBc

aMartin and Gerdes [2007] and Johnson et al. [2007].
bArctic Runoff Database and P. Winsor (personal communication, 2007).
cCommunity Climate System Model, version 3 [Briegleb et al., 2004]. Values listed for spectrum with wavelengths <0.7 mm

and are typically ∼0.3 higher than those in with wavelengths >0.7 mm.
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Figure 3. Modeled ice volumes on the 1st of January (left) and the previous 15th of 
September for the period 2000-2009. In the model, the MY ice volume loss over this period seems to 
contribute largely to the total volume loss, in accordance with the observations of Kwok et al. 2009. The trend of the 
FY ice (left panel) is slightly positive (i.e. 55km3/year), and can be explained by an increase of ice-free surface at the 
end of the melting season over the same period. The negative trend of the total ice volume at the end of the melting 
season (right panel, in black) is smaller than that at the beginning of the following winter (left panel, in red). This 
means, if one considers the net melting to be negligible between September 15th and January 1st, that the export of 
MY ice has slightly increased on average over the period (left panel, black arrows). 
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